franka-233
¨̮
忍不住了,开导!🥵🥵🥵
(sinx)' = cosx
  (cosx)' = - sinx
  (tanx)'=1/(cosx)^2=(secx)^2=1+(tanx)^2
  -(cotx)'=1/(sinx)^2=(cscx)^2=1+(cotx)^2
  (secx)'=tanx·secx
  (cscx)'=-cotx·cscx
  (arcsinx)'=1/(1-x^2)^1/2
  (arccosx)'=-1/(1-x^2)^1/2
  (arctanx)'=1/(1+x^2)
  (arccotx)'=-1/(1+x^2)
  (arcsecx)'=1/(|x|(x^2-1)^1/2)
  (arccscx)'=-1/(|x|(x^2-1)^1/2)
  ④(sinhx)'=coshx
  (coshx)'=sinhx
  (tanhx)'=1/(coshx)^2=(sechx)^2
  (coth)'=-1/(sinhx)^2=-(cschx)^2
  (sechx)'=-tanhx·sechx
  (cschx)'=-cothx·cschx
  (arsinhx)'=1/(x^2+1)^1/2
  (arcoshx)'=1/(x^2-1)^1/2
  (artanhx)'=1/(x^2-1) (|x|<1)
  (arcothx)'=1/(x^2-1) (|x|>1)
  (arsechx)'=1/(x(1-x^2)^1/2)
  (arcschx)'=1/(x(1+x^2)^1/2)
忍不住了,开导!🥵🥵🥵
(sinx)' = cosx
  (cosx)' = - sinx
  (tanx)'=1/(cosx)^2=(secx)^2=1+(tanx)^2
  -(cotx)'=1/(sinx)^2=(cscx)^2=1+(cotx)^2
  (secx)'=tanx·secx
  (cscx)'=-cotx·cscx
  (arcsinx)'=1/(1-x^2)^1/2
  (arccosx)'=-1/(1-x^2)^1/2
  (arctanx)'=1/(1+x^2)
  (arccotx)'=-1/(1+x^2)
  (arcsecx)'=1/(|x|(x^2-1)^1/2)
  (arccscx)'=-1/(|x|(x^2-1)^1/2)
  ④(sinhx)'=coshx
  (coshx)'=sinhx
  (tanhx)'=1/(coshx)^2=(sechx)^2
  (coth)'=-1/(sinhx)^2=-(cschx)^2
  (sechx)'=-tanhx·sechx
  (cschx)'=-cothx·cschx
  (arsinhx)'=1/(x^2+1)^1/2
  (arcoshx)'=1/(x^2-1)^1/2
  (artanhx)'=1/(x^2-1) (|x|<1)
  (arcothx)'=1/(x^2-1) (|x|>1)
  (arsechx)'=1/(x(1-x^2)^1/2)
  (arcschx)'=1/(x(1+x^2)^1/2)
Currently Offline
Recent Activity
2,658 hrs on record
last played on Jan 22
59 hrs on record
last played on Nov 26, 2025
17.4 hrs on record
last played on Nov 9, 2025