💥 TRENDING: Cache docs - High Quality
Caching Tutorial
for Web Authors and Webmasters
- What’s a Web Cache? Why do people use them?
- Kinds of Web Caches
- Aren’t Web Caches bad for me? Why should I help them?
- How Web Caches Work
- How (and how not) to Control Caches
- Tips for Building a Cache-Aware Site
- Writing Cache-Aware Scripts
- Frequently Asked Questions
- Implementation Notes — Web Servers
- Implementation Notes — Server-Side Scripting
- References and Further Information
- About This Document
What’s a Web Cache? Why do people use them?
A Web cache sits between one or more Web servers (also known as origin servers) and a client or many clients, and watches requests come by, saving copies of the responses — like HTML pages, images and files (collectively known as representations) — for itself. Then, if there is another request for the same URL, it can use the response that it has, instead of asking the origin server for it again.
There are two main reasons that Web caches are used:
- To reduce latency — Because the request is satisfied from the cache (which is closer to the client) instead of the origin server, it takes less time for it to get the representation and display it. This makes the Web seem more responsive.
- To reduce network traffic — Because representations are reused, it reduces the amount of bandwidth used by a client. This saves money if the client is paying for traffic, and keeps their bandwidth requirements lower and more manageable.
Kinds of Web Caches
Browser Caches
If you examine the preferences dialog of any modern Web browser (like Internet Explorer, Safari or Mozilla), you’ll probably notice a “cache” setting. This lets you set aside a section of your computer’s hard disk to store representations that you’ve seen, just for you. The browser cache works according to fairly simple rules. It will check to make sure that the representations are fresh, usually once a session (that is, the once in the current invocation of the browser).
This cache is especially useful when users hit the “back” button or click a link to see a page they’ve just looked at. Also, if you use the same navigation images throughout your site, they’ll be served from browsers’ caches almost instantaneously.
Proxy Caches
Web proxy caches work on the same principle, but a much larger scale. Proxies serve hundreds or thousands of users in the same way; large corporations and ISPs often set them up on their firewalls, or as standalone devices (also known as intermediaries).
Because proxy caches aren’t part of the client or the origin server, but instead are out on the network, requests have to be routed to them somehow. One way to do this is to use your browser’s proxy setting to manually tell it what proxy to use; another is using interception. Interception proxies have Web requests redirected to them by the underlying network itself, so that clients don’t need to be configured for them, or even know about them.
Proxy caches are a type of shared cache; rather than just having one person using them, they usually have a large number of users, and because of this they are very good at reducing latency and network traffic. That’s because popular representations are reused a number of times.
Gateway Caches
Also known as “reverse proxy caches” or “surrogate caches,” gateway caches are also intermediaries, but instead of being deployed by network administrators to save bandwidth, they’re typically deployed by Webmasters themselves, to make their sites more scalable, reliable and better performing.
Requests can be routed to gateway caches by a number of methods, but typically some form of load balancer is used to make one or more of them look like the origin server to clients.
Content delivery networks (CDNs) distribute gateway caches throughout the Internet (or a part of it) and sell caching to interested Web sites. Speedera and Akamai are examples of CDNs.
This tutorial focuses mostly on browser and proxy caches, although some of the information is suitable for those interested in gateway caches as well.
Aren’t Web Caches bad for me? Why should I help them?
Web caching is one of the most misunderstood technologies on the Internet. Webmasters in particular fear losing control of their site, because a proxy cache can “hide” their users from them, making it difficult to see who’s using the site.
Unfortunately for them, even if Web caches didn’t exist, there are too many variables on the Internet to assure that they’ll be able to get an accurate picture of how users see their site. If this is a big concern for you, this tutorial will teach you how to get the statistics you need without making your site cache-unfriendly.
Another concern is that caches can serve content that is out of date, or stale. However, this tutorial can show you how to configure your server to control how your content is cached.
CDNs are an interesting development, because unlike many proxy caches, their gateway caches are aligned with the interests of the Web site being cached, so that these problems aren’t seen. However, even when you use a CDN, you still have to consider that there will be proxy and browser caches downstream.
On the other hand, if you plan your site well, caches can help your Web site load faster, and save load on your server and Internet link. The difference can be dramatic; a site that is difficult to cache may take several seconds to load, while one that takes advantage of caching can seem instantaneous in comparison. Users will appreciate a fast-loading site, and will visit more often.
Think of it this way; many large Internet companies are spending millions of dollars setting up farms of servers around the world to replicate their content, in order to make it as fast to access as possible for their users. Caches do the same for you, and they’re even closer to the end user. Best of all, you don’t have to pay for them.
The fact is that proxy and browser caches will be used whether you like it or not. If you don’t configure your site to be cached correctly, it will be cached using whatever defaults the cache’s administrator decides upon.
How Web Caches Work
All caches have a set of rules that they use to determine when to serve a representation from the cache, if it’s available. Some of these rules are set in the protocols (HTTP 1.0 and 1.1), and some are set by the administrator of the cache (either the user of the browser cache, or the proxy administrator).
Generally speaking, these are the most common rules that are followed (don’t worry if you don’t understand the details, it will be explained below):
- If the response’s headers tell the cache not to keep it, it won’t.
- If the request is authenticated or secure (i.e., HTTPS), it won’t be cached by shared caches.
- A cached representation is considered fresh (that is, able to
be sent to a client without checking with the origin server) if:
- It has an expiry time or other age-controlling header set, and is still within the fresh period, or
- If the cache has seen the representation recently, and it was modified relatively long ago.
- If a representation is stale, the origin server will be asked to validate it, or tell the cache whether the copy that it has is still good.
- Under certain circumstances — for example, when it’s disconnected from a network — a cache can serve stale responses without checking with the origin server.
If no validator (an ETag or Last-Modified header) is
present on a response, and it doesn't have any explicit freshness information,
it will usually — but not always — be considered uncacheable.
Together, freshness and validation are the most important ways that a cache works with content. A fresh representation will be available instantly from the cache, while a validated representation will avoid sending the entire representation over again if it hasn’t changed.
How (and how not) to Control Caches
There are several tools that Web designers and Webmasters can use to fine-tune how caches will treat their sites. It may require getting your hands a little dirty with your server’s configuration, but the results are worth it. For details on how to use these tools with your server, see the Implementation sections below.
HTML Meta Tags and HTTP Headers
HTML authors can put tags in a document’s <HEAD> section that describe its attributes. These meta tags are often used in the belief that they can mark a document as uncacheable, or expire it at a certain time.
Meta tags are easy to use, but aren’t very effective. That’s because they’re only honored by a few browser caches, not proxy caches (which almost never read the HTML in the document). While it may be tempting to put a Pragma: no-cache meta tag into a Web page, it won’t necessarily cause it to be kept fresh.
If your site is hosted at an ISP or hosting farm and they
don’t give you the ability to set arbitrary HTTP headers (like Expires and
Cache-Control), complain loudly; these are tools necessary for doing your
job.
On the other hand, true HTTP headers give you a lot of control over how both browser caches and proxies handle your representations. They can’t be seen in the HTML, and are usually automatically generated by the Web server. However, you can control them to some degree, depending on the server you use. In the following sections, you’ll see what HTTP headers are interesting, and how to apply them to your site.
HTTP headers are sent by the server before the HTML, and only seen by the browser and any intermediate caches. Typical HTTP 1.1 response headers might look like this: