Install Steam
sign in
|
language
简体中文 (Simplified Chinese)
繁體中文 (Traditional Chinese)
日本語 (Japanese)
한국어 (Korean)
ไทย (Thai)
Български (Bulgarian)
Čeština (Czech)
Dansk (Danish)
Deutsch (German)
Español - España (Spanish - Spain)
Español - Latinoamérica (Spanish - Latin America)
Ελληνικά (Greek)
Français (French)
Italiano (Italian)
Bahasa Indonesia (Indonesian)
Magyar (Hungarian)
Nederlands (Dutch)
Norsk (Norwegian)
Polski (Polish)
Português (Portuguese - Portugal)
Português - Brasil (Portuguese - Brazil)
Română (Romanian)
Русский (Russian)
Suomi (Finnish)
Svenska (Swedish)
Türkçe (Turkish)
Tiếng Việt (Vietnamese)
Українська (Ukrainian)
Report a translation problem

Poland



Here are the instructions on how to build a particle accelerator:
1. Get a Particle Source: To start, you need a source of charged particles. Protons are a common choice, and they can be created by stripping electrons from hydrogen atoms, leaving positively charged protons behind. Alternatively, you could use electrons, which can be generated using a simple cathode or electron gun. The type of particle you choose depends on the kind of experiments or applications you have in mind.
3. Install Electromagnets for Steering and Focusing: Charged particles don’t naturally travel in straight lines, so electromagnets are used to steer and focus the particle beam. Wrap copper wire into coils (solenoids) or use specialized electromagnets around sections of the vacuum chamber. These magnets will bend and direct the particles, especially in circular or curved accelerators like a cyclotron or synchrotron. The magnets also focus the beam so it doesn't spread out as it travels.
5. Set Up a High-Voltage Power Supply: To power the RF cavities and electromagnets, you’ll need a high-voltage power supply. It must be carefully controlled and synchronized to ensure that the RF fields accelerate the particles at the right time, and that the electromagnets are properly tuned to guide them. Depending on the scale of your accelerator, the power requirements could be substantial.
7. Add Cooling Systems: If your accelerator is large or uses superconducting magnets, you’ll need cooling systems, such as liquid helium, to keep the magnets at cryogenic temperatures. Superconductors lose all electrical resistance at these temperatures, allowing for extremely efficient and powerful magnets. Even if your setup doesn’t require superconductors, cooling may be necessary to prevent overheating in the RF cavities and electromagnets.